Month: July 2025

Allgemein Event

Summer expedition to Aletsch Glacier 2025

A trip to the glacier is an opportunity to bring the algorithms to life. From the 4th to the 19th of July 2025, Danielle Gunders-Hunt (FAU Erlangen-Nürnberg, M3OCCA) and Valentin Marx (FAU Erlangen-Nürnberg, M3OCCA affiliated) were situated at the Jungfraujoch research station in Switzerland to collect radar measurements using custom-built radar systems.

This summer’s fieldwork took us to the Aletsch Glacier in Switzerland. We drove to Grindelwald on Thursday and met up with colleagues from RWTH Aachen and the University of Wuppertal, affiliated with the TRIPLE project. After an impressive gondola ride and train journey through the mountain, we arrived at the research station located at 3,454 m a.s.l.

Our brave mountain guide jumping into a crevasse, expecting us to save him.

The research station is home only to researchers and is managed by a couple who oversee the High Altitude Research Stations Jungfraujoch & Gornergrat. They showcased the fascinating equipment held permanently on the glacier, ranging from instruments measuring air constituents for climate change monitoring, to medical and biological experiments observing the influence of high altitude on organisms.

The next day we began with a guided tour led by a mountain guide to learn the basic rescue techniques and familiarize ourselves with the glacier terrain. Unstable weather in the first few days caused some delays, but we soon began carrying out our full set of measurements with the GPR sled.

Our goal was to evaluate our equipment in various walking formations to assess the efficiency of each imaging method. Different formations can leverage different algorithms to generate 2D or 3D images of the snow and firn layers, as well as crevasses hidden beneath the surface.

Both radar systems used during the campaign were developed in-house at the Institute of Microwaves and Photonics (LHFT), FAU Erlangen-Nürnberg. The first system was an impulse radar operating at a center frequency of 1.35 GHz. Impulse radar transmits short, broadband pulses and listens for echoes reflected from internal glacier boundaries—such as transitions between snow, firn, ice—or from embedded features like crevasses, air pockets or water inclusions. We then replaced the radar system with a frequency-modulated continuous wave (FMCW) radar, ramping between 0.7 and 4.7 GHz. Unlike impulse radar, FMCW continuously emits a frequency-modulated signal and compares the transmitted and received waves to measure the time delay and amplitude of returning echoes. This method offers improved sensitivity and resolution, especially for fine structures near the surface.

Tracks we were walking to test out various reconstruction algorithms.
The sled being dragged in a measurement scenario.

 

 

 

 

 

 

We are now looking forward to analyzing how each type of radar—together with its frequency and signal power—affects both the penetration depth and the resolution of subsurface glacial features.

The fieldwork was a rewarding collaborative experience. Working alongside the TRIPLE team, who were testing a hybrid radar and sonar based forefield reconnaissance system integrated into a melting probe, reaching 12 m beneath the surface, gave us valuable insights into subsurface structures which we hope to cross-validate with our radar results.

Valentin improvising resourceful ways of preparing Spätzle.

Beyond the scientific goals, sharing meals, challenges, and ideas made the high-altitude days both productive and memorable. Each evening, breathtaking sunsets from the Sphinx Observatory (3,570 m a.s.l.) reminded us how extraordinary our setting truly was—it felt like we were on top of the world!

This campaign wouldn’t have been possible without the support of Valentin Marx, Lukas Rechenberg, and Niklas Haberberger, as well as the remaining colleagues from the TRIPLE-FRS-2 project.

The M3OCCA project is generously funded by the Elitenetzwerk Bayern.

Incredible sunsets from the Sphinx observatory.

 

Allgemein Event Outreach

IDP M3OCCA second phase is approved

The Bavarian State Ministry of Science and Arts has approved a second phase of the International Doctorate Program “Measuring and Modelling Mountain Glaciers and Ice caps in a Changing Climate” (IDP M³OCCA) as part of the Elite Network of Bavaria (ENB). In the second phase, we will continue the close collaboration between FAU, the Technical University of Munich, the Microwave Institute of the German Aerospace Center (DLR) in Oberpfaffenhofen, and the Bavarian Academy of Sciences (BAdW).

The aim of the IDP is to develop innovative methods and technologies to quantify global glacier retreat more accurately over large areas and reduce existing uncertainties. Artificial intelligence techniques are used, for example, to analyze large-scale satellite data or to improve physics-based process models. In addition, the researchers are further developing pioneering technologies such as radar tomography and geophysical models to enable improved forecasts.

Starting in June 2026, nine doctoral students will be funded for four years by the ENB. In addition, the new funding includes a postdoctoral position to help graduates of the current funding phase transition into independent scientific work. M³OCCA is characterized by a high degree of internationality and interdisciplinarity and trains its young scientists in a structured support program in addition to their professional qualifications. In addition to the doctoral students funded by the ENB, doctoral students from other funding programs—such as various junior research groups—are explicitly allowed and encouraged to participate in the IDP in order to create a broader scientific and thematic basis and facilitate lively exchange.

Allgemein Event

Winter expedition to Aletsch Glacier 2025

A much-awaited winter 2025 Aletsch expedition was carried out to attain repeat glaciological and geophysical measurements at locations similar to the winter 2024 Aletsch campaign. An expedition aimed to detect changes in firn stratigraphy and firn density over two consecutive years under the influence of regional climatic changes. This was achieved by using Ground Penetrating Radar (GPR) profiling across the two main accumulation zones of the Aletsch glacier. The GPR-based common mid-point (CMP) method was used to gather indirect firn density measurements. This was complemented by the deep firn core (nearly 20 m) at the upper part of the Ewigschneefeld, a shorter firn core (approximately 8 m) at the lower part of the Ewigschneefeld, and two snow pits at Jungfraufirn and the Ewigschneefeld.

This expedition is part of the M3OCCA international doctoral program (IDP) project SP2.3. The campaign was a collaborative effort of Paul Scherrer Institute (PSI), Bern, Switzerland, BAdW, Munich, and FAU Erlangen, Germany.

We appreciate the efforts of the firn core team, Dr. Theo Jenk, Michelle Worek (PhD), and Samuel Marending from Laboratory of Analytical Chemistry, PSI Bern, Switzerland, Dr. Christoph Mayer, Dr. Astrid Lambercht, and Akash Patil (PhD) from Department of Geodesy and Glaciology BAdW Munich, Germany, and Dr. Thorsten Seehaus and Dr. Alexander Groos from Institute of Geography FAU Erlangen, Germany.